Threshold Signatures in Blockchain

Manan Monga

December 2020

1 Introduction

In a blockchain construction, operations are irreversible. As an adversary or other hostile entity
can catastrophically affect a blockchain’s contents, security is paramount. Conventional key gen-
eration schemes may be attacked or have signatures stolen. Key protection is not sufficient, and
secret sharing with numerous parties can be time consuming and expensive. Thus, systems are
looking towards threshold signature schemes. Revolving around conducting operations only once
a minimum threshold of secret sharers participate or consent, threshold signatures are appearing
in more and more asymmetric cryptography schemes [1, 3]. In this survey paper, we primarily
focus on the Elliptic Curve Digital Signature Algorithm, henceforth abbreviated as ECDSA.

2 Multiparty Computation

The aim of secure multiparty computation is to enable parties to carry out distributed computing
tasks in a secure and efficient. Distributed computing literature often deals with questions of
computing under the threat of machine crashes and unavoidable inadvertent faults, secure mul-
tiparty computation is concerned with the possibility of deliberately malicious behavior by some
adversarial entity which may attack the protocol [2]. The aim of this attack could be to learn
private information or to cause the result of the computation to be incorrect. Therefore, two
important requirements on any secure computation protocols are privacy and correctness. The
privacy requirement states that nothing should be learned beyond what is absolutely necessary;
more exactly, parties should learn their output and nothing else. The correctness requirement
states that each party should receive its correct output. Therefore, the adversary must not be able
to cause the result of the computation to deviate from the function that the parties had set out
to compute.

Suppose two or more parties wished to compute the output of a function together. This
function would accept a private value from each party. For the purposes of privacy, these parties
would have to conduct a zero-knowledge proof, in which none of the sides learn anything outside
of the output and their own respective inputs. While eavesdropping from saboteurs to obtain data
from the communication line is certainly a factor, there are separate algorithms that consider this
concern. Usually, models that account for significant computation are featured [1, 2].

3 Applications of Threshold Cryptography

Threshold Cryptography refers to the practice of sharing a private key between n parties with
the stipulation that any subset must require ¢ members to decrypt or sign. In some settings, this
requirement can be more complex, needing more than just a minimal number of parties. For every
private-key operation, threshold cryptography requires the condition of ¢ parties to be met, which
will be referred to as a quorum. Threshold Digital Signature Schemes allow a quorum to delegate
their joint authority to sign a message to send to any subcommittee among themselves [2].

As threshold cryptography can be used to provide a high level of key protection, this technique
is commonly found in cloud computing, authentication, sensor networks, and electronic voting
applications [1].

Currently, ECDSA signing, a standard of threshold cryptography, is used in Bitcoin and other
cryptocurrencies. A secure cryptocurrency wallet should enable the user to split their signing key
among multiple devices and require a quorum to transfer money; banks and other institutions have
interests in offering full cryptocurrency custody solutions to customers. Many startup companies
have begun adopting threshold cryptography for key protection. Threshold cryptography provides
flexibility, allowing arbitrary and complex access structures; anonymity, such that no parties learn
any information about other parties; and scalability.

4 Elliptic Curve Digital Signature Algorithm

A standardized derivative of the earlier DSA devised by David Kravitz. While DSA was based
upon arithmetic operaitons modulo over a prime, ECDSA uses elliptic curve operations over finite



fields [3]. Requiring shorter key lengths for an equivalent level of security and being more efficient
than its predecessor, ECDSA is perhaps the most widespread of signature schemes. Current
applications involving ECDSA include authenticated messaging, binary signing, and remote login
- fields requiring high efficiency. Unfortunately, many existing techniques for generating ECDSA
signatures require the invocation of heavy, inefficient cryptographic primitives.

Previously, ECDSA encountered issues with constructing efficient protocols for threshold cryp-
tography. Pallier key generation was used to achieve several breakthroughs, but as PKG required
immense computing power and was limited to two parties, this was an incomplete solution for
multiparty ECDSA [2, 3]. When ECDSA is used as a threshold signature scheme, the stipulations
overlap those principles found in multi-party computation protocols.

Namely, no malicious party should be able to subvert protocols to glean information from
another party regarding the secret key, and no subset of malicious parties smaller than the quorum
size minimum may be able to collude to generate signatures.

5 ECDSA - “Lindell”

As performance concerns and avoidance of certain assumptions often motivate the use of ECDSA,
that current implementions with ECDSA themselves suffer from poor performance is unfortunate.
However, [3] details the replacing of Pallier additively homomorphic encryption with ElGamal
in-the-exponent. This replacement in this “Lindell” protocol enables ECDSA to achieve practical
distributed key generation and fast signing.

5.1 ECDSA Signing Algorithm

Let E be an Elliptic curve group of order ¢ with generator G. The private key is a random value
x < Z,, and the public key is @ = = * G. ECDSA signing on a message m € {0,1}* is defined as
follows:

1. Compute m' to be the |¢| leftmost bits of SHA256(m), denoted as Hy(m).

2. Choose a random k < Zy.

3. Compute R < k* G. Let R = (rg,1y).
4. Compute 7 = r,modq and s < k=1 x (m’ + r x x)modq.
5. Output (r, s).

5.2 ElGamel In The Exponent

Let G represent a group of order ¢ where the DDH assumption is assumed to be hard, and let g
be a generator of this group. To complete this construction to be consistent with Elliptic curve
notation, the group operation is addition; upper-case letters are group elements; and lower-case
letters are scalars in Z,. For this variant of ECDSA, this workaround to provide accessibility over
PKG does not act as a valid encrpytion scheme, as decryption requires solving the discrete log
problem.

An encryption of a value m € Z, with public key P € G is denoted EGexpEnc,(m) and is
formally defined by [3]:

EGexpEncy(m) = (A,B) = (rxg,r« P+m=x*g)

r is a random value taken from Z,. This encryption is additively homomorphic, meaning that two
ciphertexts can be added by calculating the sum of the two ciphertexts.

5.3 Secure Multiplication - F,,;

Operating as an extended version of a multiplication functionality from additive shares, F,,ut
can be considered a helper functionality to ECDSA. The basic functionality is that each party P;
provides a; and b; for input and receives ¢;. For additional ECDSA needs, each party also receives
a* G. An additional stipulation required for security is that honest parties are limited to random
input shares only, while corrupt parties can choose their own inputs. As part of use with ECDSA,
this protocol is private but not always correct. In other words, malicious adversaries cannot learn
more than allowed, but correctness is not a guarantee.

This multiplication functionality is used to securely compute a functionality family for ECDSA.
One function is the ability to securely multiply values together, allowing parties to choose random
x;, k; values and obtain R = k x G.



5.4

Distributed ECDSA Signing

As mentioned in the previous section, F,,; is heavily used to construct a protocol for securely
computing Fgopsa- As part of the ECDSA construction, there are two phases with respectively
different algorithms presented: key generation and signing. Within each algorithm, each party has
the description of the group (G, ¢) and the number of parties n.

5.4.1 Key Generation

Each party P; works as follows:

1.

- W

P; sends (init, G, q) to Fpue to run the initialization phase.

P; sends (input, sidgen) to Fnuye and receives (input, sidgen,, ;).
P; waits to receive (input,0) to Fpuit-

P; sends (element — out,0) to Fpyuit-

P; receives (element — out, 0, Q) from F e

Output: P; locally stores @) as the ECDSA public-key.

5.4.2 Signing

Each party P; works as follows, upon input Sign(sid, m) where sid is a unique session id sid:

1.

© »® N>

5.5

P; sends (input,sid||1) and (input,sid||2) to Fpuie and receives (input,sid||1, k;) and (input,sid||2, p;).
Both k; and p; denote the current cumulative sum of k£ and p, respectively.

After receiving (input,sid||1) and (input,sid||2) from Fpue, Pi sends (mult, sid||1, sid||2)
and (element-out, sid||1) to Fruyit-

P; receives (mult-out,sid||1, sid||2,r) and (element-out,sid||1, R) from Fq¢, where r = kxp
and R=k=*G.

P; computes R = (ry,ry) and r = rymodq.

P; sends (affine, 0 sid||3,7,m') to Fpuit, where sid||3 will be associated with m’ + x % rmodgq.
P; sends (mult, sid||2, sid||3) to Fuit-

P; receives (mult-out, sid||2, sid||3,b) from Finuit, where b = p* (m' 4+ x % r)modgq.

P; computes s’ = r~! x bmodq and s = min{s,q — s}.

Output: P; outputs (r, s).

Security Model

Through models and ideal/real behavior, two security properties for this protocol can be demon-
strated. In the presence of malicious adversaries and static corruptions, the protocol follows the
standard for instances no honest majority - security with abort [3]. This means that a corrupted
or malicious party can learn output but an honest party could not. As in the protocol schematics,
the adversary to the ideal model receives the output first and sends either (abort,j) or (continue,j)
to the trusted party, where j represents the current party’s index. Each party with indexes j € [n]
will either receive the output or receive abort, depending on what that trusted party receives.
This means that as different honest parties can either receive output or receive aborts, the infor-
mation passed to each honest party is not consistent. Termed non-unanimous abort, referring to
the inconsistent outputs, the protocol can be easily transformed such that all honest parties will
receive the output if at least one honest party received output [3].

In other related work, the security of this protocol in a hybrid model with ideal functional-
ities that securely act as helper functions has already been proven [3]. Specifically, as long as
subprotocols are used, indistinguishability of the output from honest and malicious parties using
real protocols from calling a trusted party that just directly computes the ideal functionalities is
guaranteed.



5.6 Efficiency and Results

There were two different “Lindel” instantiations considered for comparison: one based on oblivi-
ous transfer and one based on Paillier. However, only the Paillier-based protocol was developed
in C++ and tested on AWS with Intel machines with 1 GB RAM and a 1Gb/s network card
[3]. It was discovered that the OT-based variant required significantly fewer computations and
exponentiations, as once the base OTs are computed in the KeyGen phase, OT extensions used
in the actual signing have negligible, near-irrelevant cost. Additionally, the Pallier-based protocol
requires additional expensive large-integer exponentiation calculations.

However, the variant with Paillier-based private multiplication features significantly lower com-
munication costs, which makes this option more attractive for most real-world scenarios. Fortu-
nately, the costs are low enough to be practical, especially for cryptocurrency applications. On
a single-threaded context, the signing time goes from 304ms with 2 parties to about 3 seconds
with 10 parties to 5 seconds with 20 parties [3]. While these speeds can be significantly increased
through multi-threading, they are already practical. However, the process of KeyGen requires
much more time: 11 seconds for 2 parties, 17 seconds for 10 parties, and 28 seconds for 20 parties.
As key generation must only be run once, even this lengthy process can be considered practical.

Ultimately, the goal of the “Lindell” protocol was to demonstrate that practical key generation,
signing, and distribution could be achieved for multiparty threshold ECDSA signature schemes.
The results with the provided algorithms and implemented subroutines demonstrate that, owing
to the communication times with Pallier-based private multiplication, those goals are feasible.
This protocol, by demonstrating the mechanics of practical distributed key generation, paves the
way to practically implementing solutions for applications demanding threshold ECDSA signing.
However, as the “Lindell” protocol was akin to a pioneer, it lacks features and efficiency that other,
newer protocols contain.

6 ECDSA - “GG20”

The “Lindell” protocol was one of the first to provide efficient threshold ECDSA with additional
distributed key generation and has opened the door to more advanced ECDSA protocols. Named
after its researchers and the year that it was published in, “GG20” is one such protocol that seeks
to alleviate two drawbacks found in prior threshold signature schemes. Specifically, “GG20” is a
protocol for threshold ECDSA that improves efficiency and enables identification of misbehaving
parties [4].

Identifying misbehaving parties can be crucial for some applications. In most applications,
being able to identify rogue servers is a convenience, allowing masters to avoid restarting all
servers. However, in an application that involves several distinct parties controlling key shares,
the inability to identify aborts can be catastrophic. In the latter case, to identify the rogue agent
is to enable the service.

6.1 ECDSA Scheme Constructions

Players receive input {G,g}, the cyclic group used by the ECDSA signature scheme. Each player
P; is associated with a public key F; for an additively homomorphic encryption scheme e. Much of
the construction matches that found in the previous protocol “GG18”, albeit with augmentations
that are later exploited to enable identifying aborts [4].

6.1.1 KeyGen Protocol

e Phase 1: Each Player P; selects u; €r Z,; computes [KGC;, KGD;] = Com(g**). Each
Player P; broadcasts F;, the public key for Paillier’s cryptosystem.

e Phase 2: Each Player P; broadcasts KGD,;. Let y; be the value decommitted by P;. The
player P; performs a (¢,n) Feldman-VSS, a verifiable secret sharing scheme extension, of
the value wu;, with y; as the free term. The public key is then set to the product of all y;.
Each player adds the private shares received during the n Feldman VSS protocols, and the
resulting values z; are a (¢,n) Shamir’s secret sharing of the secret key.

e Phase 3: Let N; = p; x ¢; be the RSA modulus associated with E;. Each player P; proves in
zero knowledge that they know x; using Schnorr’s protocol.

6.1.2 Signing Protocol

This protocol is run on input m, the hash of the message M being signed, and the output of the
previous KeyGen protocol. Let S C [1..n] be the set of all players participating in the signature.
The size of S should equal ¢ + 1. Thus, ephemeral secrets can be shared using a (¢,t + 1) secret
sharing scheme and do not require the general (¢,n) structure.

e Phase 1: Each Player P; selects k;,r; €g Zg; computes [C;, D;] = Com(g"*) and broadcast
C;. k and r are thus defined as the sum of all k; and r;, respectively.



e Phase 2: Every pair of players P;, P; engages in two multiplicative-to-additive share conver-
sion subprotocols. However, as the first message for these protocols is the same, it is only
sent once.

e Phase 3: Every player P; broadcasts J; and computes 6 'modg, and § = dicg i = kr.
Additionally, every player P; also broadcasts T; and proves in zero knowledge that they
know &, ;.

e Phase 4: Each Player P; broadcasts D;, and Rlz are the values decommitted by P;. The
players compute the sum of all R;, and R = ¢g* | and » = H'(R).

e Phase 5: Each Player P; broadcasts R; = R*i, as well as a zero knowledge proof of consistency
between R; and E;(k;), acquired from Phase 2. If g # the product of all R;, the protocol
aborts.

e Phase 6: Each player P; broadcasts S; = R%* and a zero knowledge proof of consistency
between S; and T;, acquired from Phase 3.

e Phase 7: Each player P; broadcasts s; = mk; + ro; and set s = the sum of all s;. If the
signature (r, s) is correct for m, the players accept, otherwise they abort.

6.2 Noninteractive Online Phases

“GG20” is capable of being split into an offline preprocessing stage. In this preprocessing stage,
most of the computation and commnuication is completed. Subsequently comes the online stage,
in which the message is known, consisting of a single communication round. In this one round, each
player performs a scalar multiplication, which results in a later significantly lowered computation
cost [4].

During the preprocessing phase, additive shares of s are created from additive sharings of x, k.
At some point, a new distributed verification check is performed on those shares of s to ensure
that they combine to construct a correct signature. As this check is performed on the additive
shares before the message is known, this check can be moved to the preprocessing phase. Such
a move reduces complexity and eliminates the requirement for online interactivity. Within the
online phase, because the message would already be known, players would only require only scalar
multiplication and one communication round.

6.3 Identifying Aborts

Identifying misbehaving parties efficiently is a key contribution of “GG20” [4]. If an abort happens
during the preprocessing stage, then the full signature has not been revealed yet and the players
can reveal the random choices they made during the protocol so far so that their behavior can be
verified. Bad players would thus be identified. If an abort occurs during the online stage, then
the shares of the signatures that each player reveals can easily be checked to be correct against
public information procured by the offline stage.

In this protocol, an abort will happen if any player deviates from the protocol in a clearly
identifiable way by not complying with instructions. Assume that all messages transferred between
players are signed, so identifying the messages’ origins is possible. In the case of such an abort,
the guilty party would clearly be identified and removed. These identifications are of simpler
difficulty. In the case of an abort, identifying guilty parties even when they had not deviated from
the protocol significantly is a much larger contribution of “GG20”.

Within “GG20”’s KeyGen protocol, there are two possible places an abort can occur. In Phase
2, a player complaining about receiving an inconsistent Feldman share will cause an abort. In
Phase 3, a player failing to prove knowledge of x; or the correctness of their Paillier key will cause
an abort [4]. In the latter case, failing a zero knowledge proof will immediately reveal the guilty
party. However, in Phase 2, a player P; is complaining about receiving a faulty Feldman VSS share
from player P;, meaning that the suspect between those two players is ambiguous. However, a
simple identification protocol requires the complaining player to publish their received share for all
other players to authenticate. Regardless of where the abort occurs, once the misbehaving player
is removed, the key generation protocol must be rerun with fresh randomness to ensure a secure
key.

Within “GG20”’s Sign protocol, there are eight instances in which an abort can occur. Five
of these eight instances involve a player failing a zero knowledge proof or a commitment opening
and are easily concluded. However, in the instance that the final output, that the signature (r, s)
must be correct for m, causes a fail, identification is slightly more complicated. Each player P;
would thus be asked to confirm R* = R % ST. Whichever player fails is then identified as the
malicious party. In the last two cases, a quorum-wide value fails to authenticate, meaning that
potential fault is spread too far to disentangle from similar distributed verification checks [4].

In the last two cases, to prove that the players ran the protocol correctly to confirm that fault
is with a malicious party, players are asked to reconfirm various values inputted at previous stages.
Once the protocol is vindicated, each player P; will then reveal their individual values k;, v;, &, 5,
which all players will confirm. From this, the corrupting player can be identified.



6.4 Efficiency and Results

Unlike other contemporary protocols, the “GG20” protocol does not require distributed verification
of the signature’s validity. The removal of this check causes the protocol to be more round count
efficient and removes any and all dependencies on the multi-round interactive parts. Additionally,
the implementation of parallelization during the protocol participation phase becomes possible.
Furthermore, the signature may be computed in as little as a single round, greatly increasing
efficiency and reducing the total round count required [4].

There was a second protocol developed that continued to further simplify “GG20”. This second
protocol was designed for applications in which identifiable abort is not necessary, allowing this
protocol to have a preprocessing phase that is reduced in round and computational complexity.
Specifically, players in Phase 3 do not commit to the value o; using T;. In the main “GG20”
scheme, this step was to ensure players were committed to the correct partial signature s; and
enabled the accountability of corrupt parties. As the commit and correctness check are removed,
complexity is also reduced.

For testing purposes, “GG20” was implemented in Go [4]. For additional fairness purposes,
this protocol was ran using a single core when benchmarking. However, much of the code is highly
parallelizable and could significantly reduce the reported runtimes. The results indicated that the
protocol was practical even with a non-interactive online phase. While other protocols required
online interactivity, “GG20” only requires one elliptic curve multiplication and one addition to
complete computation for the online phase. Thus, “GG20” allows players to asynchronously
participate without the need to be online simultaneously. In terms of other goals motivating the
construction of “GG20”, this protocol also reduces computations of contemporary protocols and
adds significant functionality: noninteractive online phases and identifiable aborts.

7 ECDSA - ?DJN20”

Ivan Damgard et al. provide a ECDSA protocol for threshold signatures that is simple and efficient
in terms of both computation and bandwidth usage. The protocol is in the honest majority model
with abort and is secure against active adversary and works for n parties with a security threshold
t defined as n > 2¢ + 1.

The full proof in the Universal Composability model perfectly realizes the standard ECDSA
functionality with no additional assumptions. This protocol is also extremely efficient in the online
model because it suits a pre-processing based data pipeline. Parties, on receiving the message to
be signed, can compute a sharing of the signature using only local operations and do not need to
interact with each other.

7.1 Protocol Construction

In this construction, each party generates a private key [z] using joint random secret sharing.
Then, a public key y is calculated as y = g*. For secret sharing, plain Shamir secret sharing is
used along with a simpler protocol to reveal g*. The protocol for revealing g* should work despite
multiple malicious parties and should abort if [z] is not a consistent sharing between the parties.

To sign a message M, the parties have to generate a sharing of the nonce [k] and then reveal
g" similar to how the public key is revealed. Beaver’s inversion trick is the used to compute [k~!]
as follows:

1. Generate a random sharing [a]
2. Multiply and open w = [a][k]

This is a degree of 2t sharing of ak so ak can be recovered as long as all parties participate honestly,
but with malicious parties, there needs to be an abort toleration to correctly open an authenticator
W = g that lets parties verify the correctness of W.

7.2 Point Power Calculation

An integral part of this protocol is the sub-protocol y < —POWOPEN(g, [x]) that given a sharing
[x] and a generator g, reveals the value y = ¢g*. POWOPEN works as:

1. Every party P; broadcasts y; = ¢g”* to all the other parties.

2. f is the unique degree ¢ polynomial defined by the ¢t + 1 honest parties’ shares such that
f0) =z

3. After P; has received all the g% for each y; < —{yit2,Ys+3.....Yn} it verifies that y; is
consistent with the degree ¢t polynomial defined by the first ¢ + 1 values y1,ya.....y¢+1. This
verification is done by doing a Lagrange interpolation ”in the exponent”

4. If the verification is passed, P; again uses Lagrange interpolation on y1, ¥.....4:+1 to compute
= g% = g/ (0)
y=9"=yg



POWOPEN is an important part of the key generation step and also adds a security feature
because for n > 2t + 1 all honest parties will abort if the input sharing defined by the honest
parties is inconsistent, i.e., if the shares done are not points on a degree ¢ polynomial, irrespective
of what other actions the corrupted parties perform.

7.3 Key Generation

For key generation in this protocol, the aim is to generate a sharing [z] of a uniformly random
value r < —Z, and reveal to each party y = ¢”. The protocol makes the parties use plain Shamir
secret sharing for obtaining x and lets them run POWOPEN to obtain y = ¢g”.

For correctness, the use of Shamir sharing instead of Verifiable secret sharing means that a
single malicious party P; may cause [x] to become an inconsistent sharing and this will cause
POWOPEN to abort.

An important part of the protocol is that no honest party P; reveals their value g** they have
received the shares x; from all other parties P; which forces the corrupt parties P; to “commit”
to their values x; prior to having seen y.

The protocol also ensure if two parties output a public key, it is the same public key y. In
addition, all subsets of ¢t + 1 honest parties that receive output, will receive shares of the same
private key x.

7.4 Signature Generation

To generate a signature, the parties generate [a] using Shamir sharing and then compute [w] =
[a][k] and open [w] using POWOPEN .The multiplication is done as:

1. Each party computes their share w; = a;k;
2. Results in shares on a polynomial f,, of degree 2t with f,,(0) = w.
3. Since n > 2t + 1, there are enough parties to interpolate w if they all reveal their shares.

To avoid that their shares leak unintended information, parties compute a random degree 2t zero
sharing as [b] ,ZSS(2t) and then reveal instead shares a;k; + b;. This protocol is denoted as
w < —WMULOPEN ([a], [k]; [b]). The “w” is for “weak”, since a single malicious party can cause
the protocol to output anything and the only guarantee this is provided by the protocol is that no
information about a and k, except of the product ak, is revealed.

Since [a] and [b] are being generated using secret sharing, they are not known to be consistent
sharings at this point. But, each share b; is known to be a random value that blinds the share
a;k; , which is not necessarily random. To deal with corrupt parties leading to bad shares w;
which can cause parties to end up with the wrong value of w we use a trick in order to compute
an authenticator W = ¢g®. This allows each party to check that ¢* = W and abort if not. Since
correctness of POWOPEN is ensured as explained above, even if [a] is not a consistent sharing,
all honest parties will abort at this point unless w = ak.

Finally, given [z], [k71], 7 = F(g"*) and the message m to sign, the parties compute the value:

[s] = [&~"](m + r[a])

7.5 Fairness in Online Phase

This protocol has no fairness or termination guarantee. The adversary gets to see the signature
(r,s) and may then abort the protocol before any honest party receives the signature. In practice,
parties will retry on abort and the adversary may therefore end up with several valid signatures
(r1,51),...(rL, s1,) on message m without any of the honest parties knowing any of these signatures.
This is not a forgery because a forgery can only happen with messages that the honest parties
actually intended to sign.

Since we assume an honest majority it is indeed possible to achieve fairness. The basic protocol
can be extended with just two additional pre-processing rounds in order to achieve fairness. The
main idea is that in addition to R and [k~!] the parties also prepare a sharing of [xk~!] in the pre-
processing. Doing so, [s] can be computed as [s] = m[k~!] +r[zk~!], using only linear operations.
Taking this one step further, by reducing the degree of [xk~!] to tand turning both [k~!]and[zk"]
into suitable verifiable secret sharings , this protocol achieves the property that online, when Mm
is known, the signature can be computed given only ¢ + 1 correct shares and the correctness of
each share can be validated.

7.6 Performance

The protocol requires four rounds of interaction between the servers to generate a signature. The
first three rounds can be processed before the message that needs to be signed known and can be
computed as a presignature. The presignature denotes the value R and the sharings [k—1], [e], [d]
produced during the first three rounds. Each party can save a unique presignature id (such as R).
When the message M is revealed, the parties need only then agree on a presignature id and can



complete the signature protocol d just one r The < —rot,col;s designed,o run n > 2t + 1 parties.
A random element r < —Z; can be represented using logsg bits and an element in G < — Z,, x
Z,, using logsp bits (roughly) using point compression.

The protocol is constant-round and the communication complexity is O(kn?) under the as-
sumption that both logp and logq are proportional to a security parameter x. In the case of small
number of parties, the computational bottleneck is likely to be the “long” curve exponentiations,
i.e., computing ¢g" for random values r < —Z,. For large n, since the protocol is constant round,
the O(n?) amount of arithmetics in Z, that each party needs to perform will eventually become
the bottleneck.

8 Conclusion

Threshold cryptography enables a set of two or more parties to carry out cryptographic opera-
tions, without any single party holding the secret key. This is extremely useful in a Blockchain
construction when it is essential to obtain consensus from multiple parties before the chain can be
propagated further. We have seen how ECDSA signing can be used to ensure multiple signatories
on a transaction. Threshold cryptography also supports quorum approvals involving many parties
(for example, requiring (t + 1)-out-of-n parties to sign, and maintaining security for any subset of
t corrupted parties) which makes it the right choice for distributed signing in a Blockchain.

9 References

1. Yao, A. C. (n.d.). Protocols for Secure Computations (extended abstract) [Scholarly project].
Retrieved from https://research.cs.wisc.edu/areas/sec/yao1982-ocr.pdf

2. Lindell, Y. (n.d.). Fast Secure Two-Party ECDSA Signing [Scholarly project]. Retrieved
from https://eprint.iacr.org/2017/552.pdf

3. Lindell, Y., Nof, A., amp; Ranellucci, S. (2018, October 14). Fast Secure Multiparty ECDSA
with Practical Distributed Key Generation and Applications to Cryptocurrency Custody
[Scholarly project]. Retrieved from https://eprint.iacr.org/2018/987.pdf

4. Rosario Gennaro and Steven Goldfeder. One round threshold ECDSA with identifiable abort.
Cryptology ePrint Archive, Report 2020/540, 2020. https://eprint.iacr.org/2020/540.

5. Ivan Damgard, Thomas Pelle Jakobsen, Jesper Buus Nielsen, Jakob Illeborg Pagter, and
Michael Backsvang Ostergard. Fast threshold ecdsa with honest majority. Cryptology ePrint
Archive, Report 2020/501, 2020. https://eprint.iacr.org/2020/501.



